Graft Copolymerization of Polyacrylonitrile (PAN) onto Nylon 6/Nylon 66 and Simultaneous Homopolymerization: A Comparative Study. II

A. GOPALAN, ${ }^{1, *}$ T. VASUDEVAN, ${ }^{1}$ P. MANISANKAR, ${ }^{1}$ G. PARUTHIMALKALAIGNAN, ${ }^{1}$ A. RAMASUBRAMANIAN, ${ }^{2}$ and S. S. HARIHARAN ${ }^{2}$
${ }^{1}$ Department of Industrial Chemistry, Alagappa University, Karaikudi, India; ${ }^{2}$ Madura College, Madurai, India

Abstract

SYNOPSIS The kinetics of graft copolymerization of polyacrylonitrile (PAN) onto nylon 6/nylon 66 and the simultaneous homopolymerization initiated by potassium peroxomonosulfate (PMS)-ascorbic acid ($\mathrm{H}_{2} \mathrm{~A}$) redox systems were studied separately. Various kinetics parameters were evaluated and analyzed to have a comparison among the systems. The occurrence of simultaneous homopolymerization was evident through rate parameters. When the backbone was changed, the following order was observed for grafting efficiency: polyester (PET) > nylon $6 \gtrsim$ nylon 66 . © 1995 John Wiley \& Sons, Inc.

INTRODUCTION

Graft copolymerization onto nylon appears to be a very fascinating field for research with unlimited future possibilities for improving its properties. For example, nylon grafted with styrene is insoluble in formic acid, phenol, and m-cresol and showed a good water repellency when more than 10% is grafted on. ${ }^{1}$ On the other hand, it has been reported that when nylon is grafted with acrylic, methacrylic, and maleic acids, the water absorbency, heat resistance, and antistatic properties are improved. ${ }^{2-4}$ Considerable enhancement of the wet crease recovery is noticed when nylon is grafted with acrylamide, divinylsulfones, and N vinylpyrrolidine. The dyeability of nylon is improved when grafting is carried out with the last named monomer. ${ }^{5,6}$

Graft copolymerization of vinyl polymers onto substrate polymers is generally considered to involve the generation of reactive sites on the polymer in a conventional manner. This can be achieved by several means such as high-energy ra-

[^0]diation, ${ }^{7}$ low-energy radiation in the presence or absence of stabilizers, ${ }^{8}$ and chemical methods. ${ }^{9-11}$ Among chemical methods, redox-initiated grafting is advantageous because grafting can be carried out under milder conditions with minimum sidechain reactions. ${ }^{12}$

A variety of redox systems have been employed for the initiation of graft copolymerization of vinyl monomers onto synthetic or natural polymer backbones. Van Phung and co-workers ${ }^{13}$ reported that acrylamide or acrylonitrile can be grafted on nylon 6 or nylon 66 to produce N-grafted polyamides via a redox reaction. The potassium bro-mate-thiourea redox system was used by Hebeish and co-workers ${ }^{14}$ for the initiation of graft copolymerization of methyl methacrylate (MMA) onto nylon 66. Lenka and co-workers ${ }^{15}$ carried out graft copolymerization of MMA onto nylon 6 using the acetylacetonate complex of Mn (III), Ce (III), and Fe (III).

Recently, much attention has been focused on the graft copolymerization of vinyl monomers onto nylon 6 through chemical initiation using Ce (IV), ${ }^{16,17}$ Mn (IV), ${ }^{18} \mathrm{Mn}$ (III), ${ }^{19}$ and azobisisobutyronitrile redox systems. ${ }^{20}$ Peroxodiphosphate has been used as a lone initiator for the graft copolymerization of MMA onto nylon $6 .{ }^{21}$

The present study deals with the kinetics of graft copolymerization of AN onto nylon 6/nylon 66 using the $\mathrm{PMS}-\mathrm{H}_{2} \mathrm{~A}$ redox system and its simultaneous homopolymerization to obtain a comparative understanding about the mechanism.

EXPERIMENTAL

Acrylonitrile (AN) (Robert Johnson) was used after purification as described earlier. ${ }^{22}$ Potassium peroxomonosulfate (PMS) (Aldrich, USA, under the name "OXONE") was a gift sample. The ascorbic acid $\left(\mathrm{H}_{2} \mathrm{~A}\right)$ (BDH AR) sample was used as such.

Nylon 6, in the form of fiber, was a gift sample from J. K. Synthetic, Kota, Rajasthan. It was swollen in 2% phenol solution for 48 h , then washed with water and dried before use. This was done to remove any adhering impurity and to expose the reactive sites for grafting. Nylon 66, in the form of fiber, was a gift sample from M/s Garware Nylon Limited, Bombay. This was also purified as in the case of nylon 6 before use.

Figure 1 PMS- $\mathrm{H}_{2} \mathrm{~A}$-AN-nylon 6: Effect of [AN] on R_{g} and R_{h}.

Figure 2 PMS- $\mathrm{H}_{2} \mathrm{~A}-\mathrm{AN}$-nylon 6: Effect of [AN] on n_{g} and n_{h}.

RESULTS

Graft Copolymerization of AN onto Nylon 6

Effect of [AN] on Graft and Homopolymerization Parameters

Graft Parameters. R_{g} increases steadily with [AN]. The R_{g} vs. [AN] [Fig. 1(A) and (C)] plot was a straight line with a slope of unity, pointing out the first-order dependence of R_{g} on [AN].

The kinetic chain length n_{g} was determined for the above conditions. n_{g} increases with [AN]. The plot of $\log n_{g}$ vs. \log [AN] [Fig. 2(A)] was linear in nature with a slope of unity. n_{g} vs. [AN] [Fig. 2(C)] was a straight line with a slope of unity indicating first-order dependence of $\boldsymbol{n}_{\boldsymbol{g}}$ on [AN].

Homopolymerization Parameters. R_{h} was found to increase with [AN] under identical conditions. The direct plot of R_{h} vs. [AN] ${ }^{1.5}$ [Fig. 1(B) and (D)] was found to pass through the origin, indicating a three-half-order dependence of R_{h} on AN. n_{h} shows an increasing trend with [AN]. Log n_{h} vs. $\log [\mathrm{AN}]$ [Fig. 2(B)] was a straight line with a slope of 0.5 . The n_{h} vs. [AN] ${ }^{1 / 2}$ [Fig. 2(D)] plot was drawn. The linearity in the plot supports the above observation. The rate of disappearance of PMS

Figure 3 PMS- $\mathrm{H}_{2} \mathrm{~A}-\mathrm{AN}-\mathrm{Nylon}$ 6: Effect of [PMS] on R_{g} and R_{h}.
($-R_{\text {PMS }}$) values remains almost constant for the above conditions.

Effect of [PMS] on Grafted Homopolymerization Parameters

R_{g} increases with increase in [PMS]. The direct plot R_{g} vs. [PMS] ${ }^{1 / 2}$ [Fig. 3(A) and (C)] was a straight line with a slope of 0.5 , suggesting half-order dependence of PMS on R_{g}.
n_{g} decreases with PMS. The $\log n_{g}$ vs. $\log [P M S]$ [Fig. 4(A)] plot was a straight line with a slope of negative 0.5 . The n_{g} vs. [PMS] ${ }^{-1 / 2}$ [Fig. 4(C)] plot was linear in nature, thus supporting negative 0.5 order dependence of n_{g} on PMS.
R_{h} values increase with PMS. The R_{h} vs. [PMS] ${ }^{1 / 2}$ [Fig. 3(B) and (D)] plot was linear in nature with a slope of 0.5 .
n_{h} values decrease with increase in [PMS]. The plot of $\log n_{h}$ vs. \log [PMS] [Fig. 4(B)] was a straight line with a slope of -0.5 . n_{h} vs. [PMS] ${ }^{-1 / 2}$ [Fig. 4(D)] was linear in nature, thus confirming -0.5 -order dependence of n_{h} on PMS.
$-R_{\text {PMS }}$ values increase with PMS. Log $-R_{\text {PMS }}$ vs. $\log [P M S]$ [Fig. 5(A) and (B)] was linear with a slope of unity. The $-R_{\text {PMS }}$ vs. [PMS] [Fig. 5(C) and (D)] plot was a straight line passing through the origin, confirming unity-order dependence of $-R_{\text {PMS }}$ on PMS.

Effect of $\left[\mathrm{H}_{2} \mathrm{~A}\right]$ on Graft and Homopolymerization Parameters

Graft Parameters. R_{g} increases steadily with [$\mathrm{H}_{2} \mathrm{~A}$]. The R_{g} vs. $\left[\mathrm{H}_{2} \mathrm{~A}\right]^{1 / 2}$ [Fig. 6(A) and (C)] plot was a straight line with a slope of 0.5 , indicating half-order dependence of R_{g} on $\left[\mathrm{H}_{2} \mathrm{~A}\right]$.
n_{g} decreases with $\left[\mathrm{H}_{2} \mathrm{~A}\right]$. The plot of $\log n_{g}$ vs. $\log \left[\mathrm{H}_{2} \mathrm{~A}\right]$ [Fig. 7(A)] was linear with a slope of negative 0.5 . The n_{g} vs. $\left[\mathrm{H}_{2} \mathrm{~A}\right]^{-1 / 2}$ [Fig. $\left.7(\mathrm{C})\right]$ plot was a straight line passing through the origin, thus confirming negative 0.5 -order dependence of n_{g} on $\left[\mathrm{H}_{2} \mathrm{~A}\right]$.

Homopolymerization Parameters. R_{h} values were found to increase with $\left[\mathrm{H}_{2} \mathrm{~A}\right]$. The plot of R_{h} vs. $\left[\mathrm{H}_{2} \mathrm{~A}\right]^{1 / 2}[\mathrm{Fig} .6(\mathrm{~B})$ and (D)] was linear in nature with a slope of 0.5 , pointing out half-order dependence of R_{h} on $\mathrm{H}_{2} \mathrm{~A}$. n_{h} values decrease with [$\mathrm{H}_{2} \mathrm{~A}$]. The $\log n_{h}$ vs. $\log \left[\mathrm{H}_{2} \mathrm{~A}\right]$ [Fig. 7(B)] plot was a straight line with a slope of inverse square-root order, indicating -0.5 -order dependence of n_{h} on $\left[\mathrm{H}_{2} \mathrm{~A}\right]$. The direct plot n_{h} vs. $\left[\mathrm{H}_{2} \mathrm{~A}\right]^{-1 / 2}$ [Fig. 7(D)] was linear, confirming -0.5 -order dependence of n_{h} on $\mathrm{H}_{2} \mathrm{~A}$. $-R_{\text {PMS }}$ values remain almost constant for the above conditions.

Figure 4 PMS- $\mathrm{H}_{2} \mathrm{~A}$-AN-nylon 6: Effect of [PMS] on n_{g} and n_{h}.

Figure 5 PMS- $\mathrm{H}_{2} \mathrm{~A}$-AN-nylon 6: Effect of [PMS] on $-R_{\text {PMS }}$.

Effect of Nylon 6 on Graft and Homopolymerization Parameters

R_{g} increases steadily with increase in the backbone material. R_{g} vs. [weight of nylon 6] ${ }^{1 / 2}$ [Fig. 8(A) and (C)] plot was linear in nature, suggesting halforder dependence of R_{g} on the weight of nylon 6. n_{g} decreases with the backbone amount. The log n_{g} vs. \log [weight of nylon 6] [Fig. 9(A)] plot was linear, pointing out inverse square-root-order dependence of n_{g} on the backbone amount. The direct plot n_{g} vs. [weight of nylon 6] ${ }^{-1 / 2}$ [Fig. 9(C)] was also a straight line, thus confirming the above order -0.5 .
R_{h} values increase with the amount of nylon 6. The R_{h} vs. [weight of nylon 6] ${ }^{1 / 2}$ [Figs. $8(\mathrm{~B})$ and (D)] plot was a straight line passing through the origin, indicating half-order dependence of R_{h} on nylon 6.
n_{h} values show a decreasing trend with respect to the amount of nylon $6 . \log n_{h}$ vs. [weight of nylon 6] [Fig. $9(\mathrm{~B})$] was a straight line with a slope of -0.5 . The direct plot n_{h} vs. [weight of nylon 6] ${ }^{-1 / 2}$ [Fig. 9(D)] was a straight line with a slope of $-1 / 2$, indicating $-1 / 2$-order dependence of n_{h} on the weight of nylon 6 .

Graft Copolymerization of AN onto Nylon 66

Similar observations such as first-power dependence on [AN] [Fig. 10(A) and (C)] and square-root-order dependencies on [PMS] [Fig. 12(A) and (C)], $\left[\mathrm{H}_{2} \mathrm{~A}\right.$] [Fig. 14(A) and (C)], and [wt of nylon 66] [Fig. 16(A) and (C)] with respect to R_{g} were observed when nylon 66 was used as a backbone material; first-power dependence on [AN] [Fig. $11(\mathrm{C})$] and inverse square-root-order dependencies on [PMS] [Fig. 13(C)]. [$\mathrm{H}_{2} \mathrm{~A}$] [Fig. 15(C)], and [wt of nylon 66] [Fig. $17(\mathrm{C})$] with regard to n_{g}; three-half-order dependence on [AN] [Fig. 10(B) and (D)] and square-root-order dependencies on [PMS] [Fig. 12(B) and (D)], [$\mathrm{H}_{2} \mathrm{~A}$] [Fig. 14(B) and (D)], and [wt of nylon 66] [Fig. 16(B) and (D)] with respect to R_{h}; and half-order dependence on [AN] [Fig. 11(D)] and negative 0.5 -order dependencies on [PMS] [Fig. 13(D)], [$\mathrm{H}_{2} \mathrm{~A}$] [Fig. 15(D)], and [wt of nylon 66] [Fig. 17(D)], with respect to n_{h} were made.

DISCUSSION

The observation made with the systems using nylon 6 and nylon 66 as backbone materials is almost similar to the one as seen in graft copolymerization

Figure 6 PMS- $\mathrm{H}_{2} \mathrm{~A}-\mathrm{AN}$-nylon 6: Effect of $\left[\mathrm{H}_{2} \mathrm{~A}\right]$ on R_{g} and R_{h}.

Figure 7 PMS- $\mathrm{H}_{2} \mathrm{~A}$-AN-nylon 6: Effect of $\left[\mathrm{H}_{2} \mathrm{~A}\right]$ on n_{g} and n_{h}.
of AN onto poly(ethylene terephthalate) (PET) through initiation by the $\mathrm{PMS}-\mathrm{H}_{2} \mathrm{~A}$ redox pair (Part I). This points out that the probable reaction schemes would be the same as in the previous case discussed in Part I.

Hence, a similar sequence of reactions as represented for the graft copolymerization of AN initiated by the $\mathrm{PMS}-\mathrm{H}_{2} \mathrm{~A}$ redox pair onto PET with a change in the backbone as nylon 6 would be selected as the most probable one.

The grafting of nylon 6 was reported to be initiated by the production of the nylon radical by the abstraction of a proton from the NH grouping in the backbone polymer ${ }^{16}$:

$$
\sim \mathbf{N H}+\mathbf{R} \rightarrow \mathbf{N}^{\bullet}+\mathrm{RH}
$$

where " R " can be a radical or a metal ion.

Selected Most Probable Scheme

Initiation:

$$
\begin{aligned}
\mathrm{PMS}+\mathrm{H}_{2} \mathrm{~A} \stackrel{K_{1}}{\rightleftharpoons} & \mathrm{PMS}-\mathrm{H}_{2} \mathrm{~A} \\
& \text { Complex } C_{1}
\end{aligned}
$$

$$
\begin{gathered}
C_{1}+\text { nylon } 6 \stackrel{K_{3}}{\rightleftharpoons} \mathrm{PMS}-\mathrm{H}_{2} \mathrm{~A}-\text { nylon } 6 \\
\quad \text { Complex } C_{3} \\
C_{3} \xrightarrow{k_{12}}(\text { nylon } 6)^{\cdot}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+}+\mathrm{SO}_{\overline{4}}^{-} \\
\text {(nylon } 6)^{\circ}+\mathrm{M} \xrightarrow{k_{13}} \text { (nylon } 6 \text {) } \mathrm{M}^{\cdot} \\
\mathrm{SO}_{\overline{4}}^{-}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{k_{2}} \dot{\mathrm{O}} \mathrm{H}+\mathrm{HSO}_{4}^{-} \\
\dot{\mathrm{O}} \mathrm{H}+\mathrm{H}_{2} \mathrm{~A} \xrightarrow{k_{3}} \mathrm{H}_{2} \mathrm{O}+\mathrm{A}^{-}+\mathrm{H}^{+} \\
C_{3}+\mathrm{A}^{-} \xrightarrow{k_{14}} \mathrm{SO}_{\overline{4}}^{-}+2 \mathrm{HA}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+}
\end{gathered}
$$

Propagation:

$$
\begin{gathered}
(\text { nylon } 6) \mathrm{M}^{\bullet}+\mathrm{M} \xrightarrow{k_{g}}(\text { nylon } 6) \mathrm{M}_{2}^{\bullet} \\
\left.(\text { nylon } 6) \mathrm{M}_{n-1}^{\cdot}+\mathrm{M} \rightarrow \text { (nylon } 6\right) \mathrm{M}_{n}^{+}
\end{gathered}
$$

Termination:

$$
2(\text { nylon } 6) \mathrm{M}_{n} \stackrel{k_{t 1}}{\rightarrow} \text { graft copolymer }
$$

For the simultaneous homopolymerization, a similar mechanism would be as follows:

$A B:[A N]=28.62 \times 10^{-2} \mathrm{moll}^{-1} ;[\mathrm{PMS}]=4.00 \times 10^{-3} \mathrm{~mol} \mathrm{l}^{-1} ;\left[\mathrm{H}_{2} A\right]=\angle-00 \times 10^{-3} \mathrm{mal}^{-1}$
$C, D:[A N]=22.90 \times 10^{-2} \mathrm{~mol} \mathrm{i}^{-1} ;[P M S]=6.00 \times 10^{-3} \mathrm{~mol} \mathrm{I} ;\left[\mathrm{H}_{2} \mathrm{~A}\right]=\angle .00 \times 10^{3} \mathrm{~mol}^{-1}$ $A, B, C, D: T=45^{\circ} \mathrm{C}$.
Figure 8 PMS- $\mathrm{H}_{2} \mathrm{~A}$-AN-nylon 6: Effect of weight of nylon 6 on R_{g} and R_{h}.

Figure 9 PMS- H_{2} A-AN-nylon 6: Effect of weight of nylon 6 on n_{g} and n_{h}.

Initiation:

$$
\begin{aligned}
& \mathrm{PMS}+\mathrm{H}_{2} \mathrm{~A} \stackrel{K_{1}}{\rightleftharpoons} \mathrm{PMS}-\mathrm{H}_{2} \mathrm{~A} \\
& \text { Complex } C_{1} \\
& \mathrm{C}_{1}+\text { nylon } 6 \xrightarrow{K_{3}} \mathrm{PMS}-\mathrm{H}_{2} \mathrm{~A}-\text { nylon } 6 \\
& \text { Complex } C_{3} \\
& C_{3}+\mathrm{M} \xrightarrow{k_{15}} \mathrm{M}_{1}^{-}+ \mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \mathrm{SO}_{\overline{4}}^{-}+\text {(nylon } 6 \text {) } \\
& \mathrm{SO}_{\overline{4}}^{-}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{k_{2}} \mathrm{O} \mathrm{H}+\mathrm{HSO}_{4}^{-} \\
& \dot{\mathrm{O}} \mathrm{H}+\mathrm{H}_{2} \mathrm{~A} \xrightarrow{k_{3}} \mathrm{H}_{2} \mathrm{O}+\mathrm{A}^{-}+\mathrm{H}^{+} \\
& C_{1}+\mathrm{A}^{-} \xrightarrow{k_{7}} \mathrm{SO}_{\overline{4}}^{-}+2 \mathrm{HA}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \\
& \mathrm{M}+\mathrm{A} \cdot \xrightarrow{k_{10}} \mathrm{M}_{\mathbf{i}}^{-}
\end{aligned}
$$

Propagation:

$$
\begin{gathered}
\mathbf{M}_{\mathbf{1}}+\mathbf{M} \xrightarrow{k_{P}} \mathbf{M}_{n}^{-} \\
-\cdots \cdot-\cdots \\
\mathbf{M}_{n-1}+\mathbf{M} \xrightarrow{k_{P}} \mathbf{M}_{n}^{-}
\end{gathered}
$$

Termination:

$$
\mathbf{M}_{n}^{+}+\mathbf{M}_{n}^{*} \xrightarrow{k_{t 4}} \text { homopolymer }
$$

For this scheme, the expressions for R_{g}, n_{g}, R_{h}, and n_{h} can be written based on the discussion in Part I as

$$
\begin{array}{r}
R_{g}=k_{g}\left(\frac{2 k_{12} K_{1} K_{3}}{k_{t 1}}\right)^{1 / 2} \\
\times[\mathrm{M}][\text { nylon } 6]^{1 / 2}[\mathrm{PMS}]^{1 / 2}\left[\mathrm{H}_{2} \mathrm{~A}\right]^{1 / 2}
\end{array} \quad \begin{array}{r}
n_{g}=\frac{k_{g}[\mathrm{M}]}{\left(k_{t 1}\right)^{1 / 2}\left(2 k_{12} K_{1} K_{3}\right)^{1 / 2}(\text { nylon } 6)^{1 / 2}} \\
\times(\mathrm{PMS})^{1 / 2}\left(\mathrm{H}_{2} \mathrm{~A}\right)^{1 / 2}
\end{array}, \begin{array}{r}
R_{h}=R_{p}\left(\frac{2 k_{15} K_{1} K_{3}}{\left.k_{t 4}\right)^{1 / 2}[\mathrm{M}]^{3 / 2}(\text { nylon } 6)^{1 / 2}}\right. \\
\times(\mathrm{PMS})^{1 / 2}\left(\mathrm{H}_{2} \mathrm{~A}\right)^{1 / 2} \\
n_{h}=\frac{k_{p}[\mathrm{M}]^{1 / 2}}{\left(k_{t 4}\right)^{1 / 2}\left(2 k_{15} K_{1} K_{3}\right)^{1 / 2}(\mathrm{nylon} 6)^{1 / 2}} \\
\times(\mathrm{PMS})^{1 / 2}\left(\mathrm{H}_{2} \mathrm{~A}\right)^{1 / 2} \tag{4}
\end{array}
$$

Nylon 66

When nylon 66 was used as the backbone, the following changes are required in the mechanism:

Figure 10 PMS- $\mathrm{H}_{2} \mathrm{~A}$-AN-nylon 66: Effect of [AN] on R_{g} and R_{h}.

Figure 11 PMS- $\mathrm{H}_{2} \mathrm{~A}-\mathrm{AN}$-nylon 66: Effect of [AN] on n_{g} and n_{h}.

For Graft Copolymerization

Initiation:

$$
\begin{gathered}
C_{1}+\text { nylon } 66 \xrightarrow{K_{4}} \mathrm{PMS}-\mathrm{H}_{2} \mathrm{~A}-\text { nylon } 66 \\
\text { Complex } \mathrm{C}_{4}
\end{gathered} C_{\left.C_{4} \xrightarrow{k_{16}} \text { (nylon } 66\right)^{\circ}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+}+\mathrm{SO}_{\overline{4}}^{\overline{4}}}^{\left.(\text {nylon } 66)^{\circ}+\mathrm{M} \xrightarrow{k_{17}} \text { (nylon } 66\right)^{\circ} \mathrm{M}}
$$

Propagation:

$$
\text { (nylon } 66) \mathrm{M}^{\bullet}+\mathrm{M}^{k_{g}} \text { (nylon 66) } \mathrm{M}_{2}^{\cdot}
$$

$$
\text { (nylon 66) } \mathbf{M}_{n-1}^{\cdot}+\mathbf{M} \xrightarrow{k_{g}}(\text { nylon } 66) \mathbf{M}_{n}^{\cdot}
$$

Termination:

$$
2(\text { nylon } 66) \mathrm{M}_{n}^{-} \xrightarrow{k_{w 5}}(\text { nylon } 66) \mathrm{M}_{n}^{-}
$$

For the Simultaneous Homopolymerization
Initiation:

$$
C_{1}+\text { nylon } 66 \stackrel{K_{4}}{\rightleftharpoons} \mathrm{PMS}-\mathrm{H}_{2} \mathrm{~A}-\text { nylon } 66
$$

Complex C_{4}
$C_{4}+\mathrm{M}^{k_{18}} \mathrm{M}^{\bullet}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+}+\mathrm{SO}_{4}^{-}$(nylon 66)

Propagation:

$$
\begin{gathered}
\mathbf{M}_{1}+\mathbf{M} \xrightarrow{k_{p}} \mathbf{M}_{2}^{\cdot} \\
\cdots \cdots-\cdots \\
\mathbf{M}_{n-1}^{*}+\mathbf{M} \xrightarrow{k_{p}} \mathbf{M}_{n}^{*}
\end{gathered}
$$

Termination:

$$
\mathbf{M}_{n}^{*}+\mathbf{M}_{n}^{*} \xrightarrow{k_{t 4}} \text { homopolymer }
$$

The corresponding expressions R_{g}, n_{g}, R_{h}, and n_{h} for the nylon 66 system would be

Figure 12 PMS- $\mathrm{H}_{2} \mathrm{~A}-\mathrm{AN}$-nylon 66: Effect of [PMS] on R_{g} and R_{h}.

Figure 13 PMS- $\mathrm{H}_{2} \mathrm{~A}-\mathrm{AN}$-nylon 66: Effect of [PMS] on n_{g} and n_{h}.

$$
\left.\begin{array}{rl}
R_{g}=k_{g} & \left(\frac{2 k_{16} K_{1} K_{4}}{k_{t 5}}\right)^{1 / 2} \\
& \times[\mathrm{M}](\mathrm{nylon} 66)^{1 / 2}(\mathrm{PMS})^{1 / 2}\left(\mathrm{H}_{2} \mathrm{~A}\right)^{1 / 2}
\end{array}\right)
$$

That the rate expressions for R_{g} given by (E_{1}) and (E_{5}) are the suitable choice for nylon 6 and nylon 66 as backbones was confirmed by the fact that the composite rate constants remain invariant for all the variations of [AN], [PMS], $\left[\mathrm{H}_{2} \mathrm{~A}\right]$, and nylon 6/ nylon 66. The values so obtained through different routes can be seen in Tables III and IV. The average value of the composite rate constants from R_{g} measurements with nylon 6 and nylon 66 as backbones,
respectively, are $4.47 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~g}^{-1 / 2} \mathrm{~s}^{-1}$ and $3.98 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~g}^{-1 / 2} \mathrm{~s}^{-1}$.

From the rate expression given by $\left(E_{2}\right)$ and (E_{6}) for n_{g}, the average values of the composite rate constants from n_{g} measurements for nylon 6 and nylon 66 systems are $25.3 \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}$ and $23.0 \mathrm{~mol}^{-1} \mathrm{~L}$ s^{-1}, respectively. The way of obtaining them is described in Tables I and II.

By multiplying the composite rate constants from R_{g} and n_{g} measurements, $k_{g} / k_{t}^{1 / 2}$ values were obtained as $0.106 \mathrm{~mol}^{-1 / 2} \mathrm{~L}^{1 / 2} \mathrm{~g}^{-1 / 2} \mathrm{~s}^{-1 / 2}$ and 0.096 $\mathrm{mol}^{-1 / 2} \mathrm{~L}^{1 / 2} \mathrm{~g}^{-1 / 2} \mathrm{~s}^{-1 / 2}$ for nylon 6 and nylon 66 systems, respectively. The closeness of the two values support the proposed mechanism, since the propagation rate constant must be independent of the chain length.

Taking the ratio of the values of the composite rate constants from R_{g} and n_{g} measurements, the values $k_{12} K_{1} K_{3}$ and $k_{16} K_{1} K_{4}$ for the nylon $6 /$ nylon 66 systems are calculated as $1.77 \times 10^{-5} \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}$ and $1.74 \times 10^{-5} \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}$, respectively. In comparison with the value obtained for PET (Part I), $2.43 \times 10^{-5} \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}$, it is inferred that nylon 6 and nylon 66 are less effective for grafting than is PET and the grafting efficiency would follow the order PET $>$ nylon $6 \gtrsim$ nylon 66 .

This can be understood from the \% efficiency values for the three backbones, PET, nylon 6, and nylon 66, under identical conditions: [PMS] $=6.00$ $\times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} ;\left[\mathrm{H}_{2} \mathrm{~A}\right]=3.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}{ }^{-1}$; [AN] $=2.862 \times 10^{1} \mathrm{~mol} \mathrm{~L}{ }^{-1} ; T=45^{\circ} \mathrm{C}$; wt of backbone: PET/Nylon 6/Nylon $66=0.20 \mathrm{~g}$.

Backbone	\% Efficiency
PET	3.68
Nylon 6	2.18
Nylon 66	1.46

That the rate expression R_{h} given by (E_{3}) and $\left(E_{7}\right)$ for nylon 6 and nylon 66 as backbone materials is the right choice was verified by evaluating the composite rate constants through different routes. It is found that the value is invariant for all the variations of [AN], $[\mathrm{PMS}],\left[\mathrm{H}_{2} \mathrm{~A}\right]$, and nylon $6 / \mathrm{ny}-$ lon 66. The closeness of the two values support the proposed mechanism. The values so obtained are given in Tables I and II.

The average value of the composite rate constants from R_{h} measurements using nylon 6 and nylon 66 as backbone materials are 8.75×10^{-3} $\mathrm{mol}^{-1 / 2} \mathrm{~L}^{3 / 2} \mathrm{~s}^{-1}$ and $9.01 \times 10^{-3} \mathrm{~mol}^{-1 / 2} \mathrm{~L}^{3 / 2} \mathrm{~g}^{-1 / 2}$ s^{-1}, respectively. Through rate expressions for n_{h}

$A, B:[A N]=28.62 \times 10^{-2} \mathrm{~mol} \mathrm{r}^{-1} ; C, D:[A N]=22.90 \times 10^{-2} \mathrm{~mol} \mathrm{r}^{-1}$ [PMS] $=6.00 \times 10^{-3} \mathrm{~mol} 1^{-1} \quad$ [PMS] $=6.00 \times 10^{-3} \mathrm{~mol} \mathrm{r}^{1}$
$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}:$ wt.of rylon $66=0.20 \mathrm{~g} ; \mathrm{T}=45^{\circ} \mathrm{C}$.
Figure 14 PMS- H_{2} A-AN-nylon 66: Effect of $\left[\mathrm{H}_{2} \mathrm{~A}\right]$ on R_{g} and R_{h}.

Figure 15 PMS- $\mathrm{H}_{2} \mathrm{~A}-\mathrm{AN}$-nylon 66: Effect of $\left[\mathrm{H}_{2} \mathrm{~A}\right]$ on n_{g} and n_{h}.

$A, B:[A N]=28-26 \times 10^{-2} \mathrm{~mol}^{-1} ;[P M S]=6.00 \times 10^{-3} \mathrm{~mol}^{-1} ;\left[\mathrm{H}_{2} \mathrm{~A}\right]=6.00 \times 10^{-3} \mathrm{~mol} \mathrm{I}^{-1}$ $C, D:[A N]=22 \cdot 90 \times 10^{-2} \mathrm{~mol} 1^{-1} ;[P M S]=600 \times 10^{-3} \mathrm{~mol} \Gamma^{-1} ;\left[\mathrm{H}_{2} A\right]=8.00 \times 10^{-3} \mathrm{~mol} \mathrm{r}^{-1}$ $A, B, C, D: T=\angle 5^{\circ} \mathrm{C}$.

Figure 16 PMS- $\mathrm{H}_{2} \mathrm{~A}-\mathrm{AN}$-nylon 66: Effect of weight of nylon 66 on R_{g} and R_{h}.

Figure 17 PMS-H2 $\mathrm{A}-\mathrm{AN}$-nylon 66: Effect of weight of nylon 66 on n_{g} and n_{h}.
Table I PMS- $\mathrm{H}_{2} \mathrm{~A}-\mathrm{AN}$-Nylon 6

Variation and Range	Evaluation of Rate Constants Using R_{g} and $n_{g}\left(T=45^{\circ} \mathrm{C} ; u=0.24 \mathrm{~mol} \mathrm{~L}{ }^{-1} ;\left[\mathrm{H}^{+}\right]=8.00 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}\right)$					
	Condition	Figure (Plot)	Composite Rate Constants from Grafting Studies			
			From R_{g}		From n_{g}	
			Slope	$\begin{gathered} k^{\mathrm{a}} \\ \left(\mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~g}^{-1 / 2} \mathrm{~s}^{-1}\right) \end{gathered}$	Slope	$\begin{gathered} k^{\mathrm{b}} \\ \left(\mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}\right) \end{gathered}$
[AN] $\mathrm{mol} \mathrm{L}^{-1}$						
8.586-57.24	$\begin{aligned} & {[\mathrm{PMS}]=4.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {\left[\mathrm{H}_{2} \mathrm{~A}\right]=4.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \end{aligned}$	1(A)	$1.16 \times 10^{-6} \mathrm{~s}^{-1}$	4.50×10^{-4}	-	-
2.29-7.155	Weight of nylon $6=0.20 \mathrm{~g}$ $[\mathrm{PMS}]=6.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}{ }^{-1}$ $\left[\mathrm{H}_{2} \mathrm{~A}\right]=3.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ Weight of nylon $6=0.20 \mathrm{~g}$	2(C)	-	-	1.00×10^{5}	26.8
[PMS] mol L ${ }^{-1}$						
6.0-50.0	$\begin{aligned} & {[\mathrm{AN}]=28.62 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {\left[\mathrm{H}_{2} \mathrm{~A}\right]=4.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \end{aligned}$	3(A)	$\begin{aligned} & 4.38 \times 10^{-6} \\ & \mathrm{~mol}^{1 / 2} \mathrm{~L}^{-1 / 2} \mathrm{~s}^{-1} \end{aligned}$	3.89×10^{-4}	-	-
10.0-70.0	Weight of nylon $6=0.20 \mathrm{~g}$ $[\mathrm{AN}]=22.9 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$ $\left[\mathrm{H}_{2} \mathrm{~A}\right]=6.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ Weight of nylon $6=0.20 \mathrm{~g}$	4(C)	-	-	$\begin{aligned} & 11.4 \times 10 \\ & \mathrm{~mol}^{1 / 2} \mathrm{~L}^{-1 / 2} \end{aligned}$	24.0
$\left[\mathrm{H}_{2} \mathrm{~A}\right] \mathrm{mol} \mathrm{L}^{-1}$						
1.60-7.00	$\begin{aligned} & {[\mathrm{AN}]=28.62 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {[\mathrm{PMS}]=4.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \end{aligned}$	6(A)	$\begin{aligned} & 5.88 \times 10^{-6} \\ & \mathrm{~mol}^{1 / 2} \mathrm{~L}^{-1 / 2} \mathrm{~s}^{-1} \end{aligned}$	5.14×10^{-4}	-	-
10.0-70.0	Weight of nylon $6=0.20 \mathrm{~g}$ $[\mathrm{AN}]=22.90 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$ $[\mathrm{PMS}]=8.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$	7(C)	-	-	$\begin{aligned} & 10 \times 10 \\ & \mathrm{~mol}^{1 / 2} \mathrm{~L}^{-1 / 2} \end{aligned}$	24.7
[Weight of nylon 6] g	$\begin{aligned} & {[\mathrm{AN}]=22.9 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {\left[\mathrm{H}_{2} \mathrm{~A}\right]=4.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {[\mathrm{PMS}]=6.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \end{aligned}$	8(C)	$\begin{aligned} & 0.689 \times 10^{-6} \\ & \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~g}^{-1 / 2} \mathrm{~s}^{-1} \end{aligned}$	4.34×10^{-4}	,	-
0.05-0.30	Same as above three lines	9(C)	-	-	$\begin{gathered} 8.5 \times 10^{2} \\ \mathbf{g}^{-1 / 2} \end{gathered}$	25.7

Table I (Continued)

[^1]Table II PMS-H2A-AN-Nylon 66

Variation and Range	Evaluation of Rate Constants Using R_{g} and $n_{g}\left(T=45^{\circ} \mathrm{C} ; u=0.24 \mathrm{~mol} \mathrm{~L}{ }^{-1} ;\left[\mathrm{H}^{+}\right]=8.00 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}\right)$					
	Condition	Figure (Plot)	Composite Rate Constants from Grafting Studies			
			From R_{g}		From n_{g}	
			Slope	$\left(\mathrm{mol}^{-1} \mathrm{~L}^{\mathrm{a}} \mathrm{~g}^{-1 / 2} \mathrm{~s}^{-1}\right)$	Slope	$\begin{gathered} k^{\mathrm{b}} \\ \left(\mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}\right) \end{gathered}$
[AN] mol ${ }^{-}$						
2.29-7.155	$\begin{aligned} & {[\mathrm{PMS}]=6.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {\left[\mathrm{H}_{2} \mathrm{~A}\right]=3.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}{ }^{-1}} \\ & {[\text { Weight of nylon } 66]=0.20 \mathrm{~g}} \end{aligned}$	10(C)	$1.00 \times 10^{-6} \mathrm{~s}^{-1}$	5.27×10^{-4}	-	-
2.29-7.155	Same as above three lines	11(C)	-	-	$\begin{aligned} & 0.079 \times 10^{5} \\ & \mathrm{~mol}^{-1 / 2} \mathrm{~L}^{1 / 2} \end{aligned}$	21.2
[PMS] mol L^{-1}						
10.0-70.0	$\begin{aligned} & {[\mathrm{AN}]=22.9 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {[\mathrm{PMS}]=8.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {[\text { Weight of nylon } 66]=0.20 \mathrm{~g}} \end{aligned}$	12(C)	$\begin{aligned} & 6.06 \times 10^{-6} \\ & \mathrm{~mol}^{1 / 2} \mathrm{~L}^{-1 / 2} \mathrm{~s}^{-1} \end{aligned}$	6.12×10^{-4}	-	-
10.0-70.0	Same as above three lines	13(C)	-	-	$\begin{aligned} & 11.9 \times 10 \\ & \mathrm{~mol}^{1 / 2} \mathrm{~L}^{-1 / 2} \end{aligned}$	25.5
$\left[\mathrm{H}_{2} \mathrm{~A}\right] \mathrm{mol} \mathrm{L}^{-1}$						
$1.60-7.00$	$\begin{aligned} & {[\mathrm{AN}]=28.62 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {[\mathrm{PMS}]=6.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \end{aligned}$	14(A)	$\begin{aligned} & 5.26 \times 10^{-6} \\ & \mathrm{~mol}^{1 / 2} \mathrm{~L}^{-1 / 2} \mathrm{~s}^{-1} \end{aligned}$	5.31×10^{-4}	-	-
1-7.00	[Weight of nylon 66] $=0.20 \mathrm{~g}$ $[\mathrm{AN}]=28.62 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$ $[\mathrm{PMS}]=4.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ [Weight of nylon 66] $=0.20 \mathrm{~g}$	15(C)	-	-	$\begin{aligned} & 13.3 \times 10 \\ & \mathrm{~mol}^{1 / 2} \mathbf{L}^{-1 / 2} \end{aligned}$	22.8
[Weight of nylon 66] g						
0.05-0.35	$\begin{aligned} & {[\mathrm{AN}]=28.62 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {[\mathrm{PMS}]=6.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {\left[\mathrm{H}_{2} \mathrm{~A}\right]=6.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \end{aligned}$	16(A)	$\begin{aligned} & 1.00 \times 10^{-6} \\ & \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \mathrm{~g}^{-1 / 2} \end{aligned}$	5.82×10^{-4}	-	-
0.05-0.35	Same as abovee three lines	17(C)	-	-	$\underset{\mathbf{g}^{1 / 2}}{7.41 \times 10^{2}}$	22.6

Table II (Continued)

Evaluation of Rate Constants Using R_{h} and $n_{h}\left(T=45^{\circ} \mathrm{C} ; u=0.24 \mathrm{~mol} \mathrm{~L}^{-1} ;\left[\mathrm{H}^{+}\right]=8.00 \times 10^{-2} \mathrm{~mol} \mathrm{~L}{ }^{-1}\right)$						
Variation and Range	Condition	Figure (Plot)	Composite Rate Constants from Homopolymerization Studies			
			From R_{h}		From n_{h}	
			Slope	$\begin{gathered} k^{\mathrm{c}} \\ \left(\mathrm{~mol}^{-1 / 2} \mathrm{~L}^{3 / 2} \mathrm{~g}^{-1 / 2} \mathrm{~s}^{-1}\right) \end{gathered}$	Slope	$\begin{gathered} k^{\mathrm{d}} \\ \left(\mathrm{~mol}^{-1 / 2} \mathrm{~L}^{1 / 2} \mathrm{~g}^{-1 / 2}\right) \end{gathered}$
[AN] mol ${ }^{-1}$						
$2.29-7.155$	$\begin{aligned} & {[\mathrm{PMS}]=6.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {\left[\mathrm{H}_{2} \mathrm{~A}\right]=3.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {[\text { Weight of nylon } 66]=0.20 \mathrm{~g}} \end{aligned}$	10(D)	$\begin{aligned} & 1.64 \times 10^{-5} \\ & \mathrm{~mol}^{1 / 2} \mathrm{~L}^{-1 / 2} \mathrm{~s}^{-1} \end{aligned}$	8.63×10^{-3}	${ }^{-}$	-
2.29-7.155	Same as above three lines	11(D)	-	-	$\begin{gathered} 0.812 \times 10^{6} \\ \mathrm{~mol}^{-1} \mathrm{~L} \end{gathered}$	154
[PMS] mol L^{-1}						
$10.0-70.0$	$\begin{aligned} & {[\mathrm{AN}]=22.9 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {\left[\mathrm{H}_{2} \mathrm{~A}\right]=8.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {[\text { Weight of nylon } 66]=0.20 \mathrm{~g}} \end{aligned}$	12(D)	$\begin{aligned} & 3.48 \times 10^{-5} \\ & \mathrm{~mol}^{1 / 2} \mathrm{~L}^{-1 / 2} \mathrm{~s}^{-1} \end{aligned}$	7.94×10^{-3}	-	-
$10.0-70.0$	Same as above three lines	13(D)	-	-	$\begin{aligned} & 19.2 \times 10^{2} \\ & \mathrm{~mol}^{1 / 2} \mathrm{~L}^{-1 / 2} \end{aligned}$	161
$\left[\mathrm{H}_{2} \mathrm{~A}\right] \mathrm{mol} \mathrm{L}^{-1}$						
1.60-6.60	$\begin{aligned} & {[\mathrm{AN}]=22.9 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {[\mathrm{PMS}]=6.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {[\text { Weight of nylon } 66]=0.20 \mathrm{~g}} \end{aligned}$	14(D)	$\begin{aligned} & 2.92 \times 10^{-5} \\ & \mathrm{~mol}^{1 / 2} \mathrm{~L}^{-1 / 2} \mathrm{~s}^{-1} \end{aligned}$	7.69×10^{-3}	$\frac{-}{}$	${ }^{-}$
1.60-6.60	Same as above three lines	15(D)	-	${ }^{-}$	$\begin{aligned} & 25.8 \times 10^{2} \\ & \mathrm{~mol}^{1 / 2} \mathrm{~L}^{-1 / 2} \end{aligned}$	167
[Weight of nylon 66] g	$\begin{aligned} & {[\mathrm{AN}]=22.9 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {[\mathrm{PMS}]=6.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {\left[\mathrm{H}_{2} \mathrm{~A}\right]=8.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \end{aligned}$	16(D)	$\begin{aligned} & 0.67 \times 10^{-5} \\ & \quad \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~g}^{-1 / 2} \mathrm{~s}^{-1} \end{aligned}$	8.80×10^{-3}	-	-
0.05-0.35	$\begin{aligned} & {[\mathrm{AN}]=28.62 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {[\mathrm{PMS}]=6.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {\left[\mathrm{H}_{2} \mathrm{~A}\right]=6.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \end{aligned}$	17(D)	-	-	$\underset{\mathbf{g}^{1 / 2}}{13.7 \times 10^{3}}$	153

[^2]given by (E_{4}) (nylon 6 as backbone) and (E_{8}) (nylon 66 as backbone), the average values for the individual cases are 220 and $224 \mathrm{~mol}^{-1 / 2} \mathrm{~L}^{1 / 2} \mathrm{~s}^{-1}$, respectively. Multiplying the composite rate constants from R_{h} and n_{h} measurements, $k_{p} / k_{t}^{1 / 2}$ values were calculated to be $1.39 \mathrm{~mol}^{-3 / 4} \mathrm{~L}^{-3 / 4} \mathrm{~g}^{1 / 2} \mathrm{~s}^{-1}$ and $1.42 \mathrm{~mol}^{-3 / 4} \mathrm{~L}^{3 / 4} \mathrm{~g}^{1 / 2} \mathrm{~s}^{-1}$.

Taking the rate of the composite rate constants obtained from R_{h} and n_{h} measurements, $k_{15} K_{1} K_{3}$ and $k_{18} K_{1} K_{4}$ values are calculated to be 3.98×10^{-5} $\mathrm{mol}^{-3 / 2} \mathrm{~L}^{3 / 2} \mathrm{~s}^{-1}$ and $4.02 \times 10^{-5} \mathrm{~mol}^{-3 / 2} \mathrm{~L}^{3 / 2} \mathrm{~s}^{-1}$ for the systems with nylon 6 and nylon 66 as backbone materials, respectively. By knowing the ($k_{12} K_{1} K_{3}$) value from the R_{g} and n_{g} measurements as 1.77×10^{-5} $\mathrm{mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}$ and $k_{15} K_{1} K_{3}$ from R_{h} and n_{h} measurements as $3.98 \times 10^{-5} \mathrm{~mol}^{-3 / 2} \mathrm{~L}^{3 / 2} \mathrm{~s}^{-1}$ for the system with nylon 6 as the backbone material, the ratio of the two values k_{12} / k_{15} was calculated to be 0.445 $\mathrm{mol}^{1 / 2} \mathrm{~L}^{-1 / 2}$. By knowing the $k_{16} K_{1} K_{4}$ value from R_{g} and n_{g} as $1.74 \times 10^{-5} \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}$ and the $k_{18} K_{1} K_{4}$ value from R_{g} and n_{g} as $4.02 \times 10^{-5} \mathrm{~mol}^{-3 / 2} \mathrm{~L}^{3 / 2} \mathrm{~s}^{-1}$ for the system with nylon 66 as the backbone, the ratio of the two values k_{16} / k_{18} was calculated to be $0.433 \mathrm{~mol}^{1 / 2} \mathrm{~L}^{-1 / 2}$.

The values obtained for $k_{15} K_{1} K_{3}$ and $k_{12} K_{1} K_{3}$ from the slopes of the plots $-R_{\text {PMS }}$ vs. [PMS] [Fig. 5(C) and (D)] are $6.14 \times 10^{-4} \mathrm{~s}^{-1}$ and $2.30 \times 10^{-4} \mathrm{~s}^{-1}$, respectively, using the slopes, and knowing that $-R_{\mathrm{PMS}}$ was invariant to the change in $\left[\mathrm{H}_{2} \mathrm{~A}\right]$ and [nylon 6], the two equations [$k_{15}[\mathrm{M}]+k_{12}$] with two different [M] values are solved to obtain the ratio (k_{12} / k_{15}) and the calculated value was 0.374 . This reveals that $k_{12}<k_{15}$ and this may be the reason for the homopolymerization to occur while grafting reactions are carried out. The analogous procedure for the nylon 66 system shows k_{16} / k_{18} as 0.581 and favors simultaneous homopolymerization.

The \% grafting and \% efficiency changes with the [AN], [PMS], $\left[\mathrm{H}_{2} \mathrm{~A}\right.$], and nylon 6/nylon 66 amounts were found to be similar to the one observed with the peroxomonosulfate- $\mathrm{H}_{2} \mathrm{~A}$-initiated graft copolymerization of AN onto PET. The same reasoning is therefore reckoned with based on earlier reports. ${ }^{23,24}$ Shukla and co-workers ${ }^{25}$ and Verma and Ray ${ }^{18}$ found a similar effect on $\%$ grafting with [M]. Verma and Ravisankar ${ }^{19}$ reported that the grafting efficiency was good only at a low concentration of the monomer by another system.

The low \% efficiencies in all these cases may be due to the occurrence of simultaneous homopolymerization. This obviously suggested that most of the redox catalyst may be absorbed by the backbone (nylon 6/nylon 66) and initiates grafting and homopolymerization simultaneously.

APPENDIX: PROPOSED MECHANISM FOR THE GRAFT COPOLYMERIZATION OF MMA ONTO PET AND SIMULTANEOUS HOMOPOLYMERIZATION WHEN PMS- H_{2} A WAS USED AS THE REDOX INITIATOR

Initiation:

$$
\begin{aligned}
& \mathrm{PMS}+\mathrm{H}_{2} \mathrm{~A} \stackrel{k_{1}}{\rightleftharpoons} \text { complex } C_{1} \\
& \mathrm{C}_{1}+\mathrm{PET} \stackrel{k_{2}}{\rightleftharpoons} \mathrm{PMS}-\mathrm{H}_{2} \mathrm{~A}-\mathrm{PET} \\
& \mathrm{C}_{2} \xrightarrow{{k_{8}}_{8}} \mathrm{PET}^{\cdot}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+}+\mathrm{SO}_{\overline{4}}^{-} \\
& \mathrm{SO}_{\overline{4}}^{-}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{k_{2}} \dot{\mathrm{O}} \mathrm{H}+\mathrm{HSO}_{4}^{-} \\
& \dot{\mathrm{O}} \mathrm{H}+\mathrm{H}_{2} \mathrm{~A} \xrightarrow{k_{3}} \mathrm{~A}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \\
& \text {PET }{ }^{-}+\mathrm{M} \xrightarrow{k_{5}} \text { PET M }{ }^{\cdot} \\
& \mathrm{C}_{1}+\mathrm{A}^{-} \xrightarrow{k_{7}} \mathrm{SO}_{\overline{4}}+2 \mathrm{H} \overline{\mathrm{~A}}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+}
\end{aligned}
$$

Propagation:

$$
\begin{gathered}
\text { PET }+\mathrm{M} \xrightarrow{k_{g}} \operatorname{PET~} \mathrm{M}_{2}^{+} \\
\operatorname{PET} \mathrm{M}_{n-1}^{\cdot}+\mathrm{M} \xrightarrow{k_{g}} \operatorname{PET} \mathrm{M}_{n}^{\cdot}
\end{gathered}
$$

Termination:

$$
\text { PET } \mathrm{M}_{n}^{+}+\mathrm{PET} \mathrm{M}_{n}^{+} \xrightarrow{k_{n 1}} \text { graft copolymer }
$$

REFERENCES

1. S. D. Gupta, J. T. Solbodien, and D. L. Rowart, Can. Textiles J., 78, 41 (1961).
2. R. Roberts and J. K. Thomas, J. Soc. Dyers. Colourists, 61, 342 (1960).
3. E. I. Dupont de Numours and Co., Inc., Japan Pat. 34,7248.
4. D. Tanner, E. I. Dupont de Numours and Co., Inc., Japan Pat. 38, 10342.
5. J. A. M. Sykes and J. K. Thomas, J. Polym. Sci., 55, 721 (1961).
6. E. I. Dupont de Numours and Co., Inc., Japan Pat. 37, 4596 (1962).
7. K. Arai, M. Negishi, S. Komiro, and K. Jakada, Appl. Polym. Symp., 18, 545 (1971).
8. H. L. Needles and W. I. Wasley, Text. Res. J., 39, 47 (1969).
9. M. Negashi, K. Arai, and S. Okada, J. Appl. Polym. Sci., 11, 115 (1967).
10. A. Kantouch, A. Hebeish, and Bendaric, Eur. Polym. J., 7, 153 (1971).
11. P. L. Nayak, T. R. Mohanty, and B. C. Singh, Macromol. Chem., 176, 873 (1975).
12. Y. Qiu, L. Feng, X. Yu, and S. Yang, Gongnery Gaofenzixuebao, 4, 81 (Ch.) (1991).
13. Van phung Kien and Schulz Roff, Macromol. Chem., 180, 1825 (1979).
14. A. Hebeish, E. I. Rafie, and A. I. Waly, J. Polym. Sci., Polym. Chem. Ed., 14, 2895 (1976).
15. S. Lenka and P. L. Nayak, J. Appl. Polym. Sci., 27, 1959 (1982).
16. A. K. Pradhan, N. C. Pati, and P. L. Nayak, J. Polym. Sci., Polym. Chem. Ed., 20, 257 (1982).
17. S. Hawooth and J. R. Holker, J. Soc. Dyers Colourists, 82, 257 (1966).
18. D. S. Verma and N. D. Ray, Angew. Makromol. Chem., 38, 81 (1973).
19. D. S. Verma and S. Ravisankar, Angew. Makromol. Chem., 28, 191 (1973).
20. M. B. Hughinand and B. L. Johnson, Eur. Polym. J., 8, 911 (1972).
21. S. Lenka, J. Appl. Polym. Sci., 27, 1417 (1982).
22. S. S. Hariharan and M. Meenakshi, Makromol. Chem., 180, 2513 (1979).
23. M. H. El. Rafie, M. I. Khalil, and A. Hebeish, J. Appl. Polym. Sci., 19, 1677 (1975).
24. K. S. Basu, K. P. Rao, K. T. Joseph, M. Santappa, and Y. Nayudamma, Leather Sci., 28, 355 (1981).
25. J. S. Shukla and G. K. Sharma, Ind. J. Chem., 25A, 463 (1986).

Received February 2, 1994
Accepted December 13, 1994

[^0]: * To whom correspondence should be addressed.

 Journal of Applied Polymer Science, Vol. 56, 1715-1729 (1995)
 © 1995 John Wiley \& Sons, Inc.
 CCC 0021-8995/95/131715-15

[^1]: ${ }^{\mathrm{a}}{ }^{k_{g}\left(2 k_{12} K_{1} \mathrm{~K}_{3} / k_{t 1}\right)^{1 / 2} .}$
 ${ }^{\mathrm{b}} k_{g} /\left(k_{t 1}\right)^{1 / 2}\left(2 k_{12} K_{1} K_{3}\right)^{1 / 2}$.
 ${ }^{\mathrm{c}} k_{p}\left(2 k_{15} K_{1} K_{3} / k_{t 4}\right)^{1 / 2} \cdot$
 ${ }^{\mathrm{d}} k_{p} /\left(k_{t 4}\right)^{1 / 2}\left(2 k_{15} K_{1} K_{3}\right)^{1 / 2}$.

[^2]:

